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ABSTRACT. Set R© is a card game played with a deck in which each card has four properties. Each property takes
on one of three values. Players compete to quickly find sets of three cards such that for each property, the cards
have all the same or all different values.

We show that a natural generalization of the game, where the number of properties and values vary, is NP-
complete. We also study the case where the number of values is fixed at 3, as in the classic game, and the number
of properties p varies. In a restricted model involving checking pairs of cards, we give an exactly (not just asymp-
totically) optimum Θ(n2p)-time algorithm.

1. INTRODUCTION

1.1. The Game of Set. The card game Set R© [6] was invented in 1974 by Marsha Jean Falco, and was set
loose upon the world in 1991. The game is played with a deck of 34 = 81 cards. Each card is unique and is
printed with figures that have four properties: color, shape, shading, and number of figures. Each of these
properties takes on one of three values:

• color is red, green, or purple;
• shape is oval, diamond, or squiggle;
• shading is solid, shaded, or open; and
• number of figures is one, two, or three.

Define a valid set as three cards such that for each property, the three cards either have the same value or no
two of them have a common value.1 Examples of a valid set and an invalid set are shown in Figure 1.1.

1What we refer to as a valid set is simply called a “set” in traditional game play. We adopt the moniker “valid set” to avoid
overloading the mathematical meaning of “set”.

FIGURE 1.1. The three cards on the left (which are purple, green, and red, respectively)
form a valid set; the three on the right (which are red, green and green) do not.
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The game is played as follows.2 Twelve cards are dealt face-up. Any number of players search for valid
sets among the dealt cards, and asynchronously claim them as soon as they find them. The three cards that
form the valid set are removed and three new cards are dealt in their place. Play continues in this manner
until all cards have been dealt and all valid sets among the dealt cards have been claimed. The winner is
the player who has claimed the most valid sets.

1.2. The model. Because the goal is to claim valid sets faster than other players, studying the computa-
tional complexity of finding valid sets is natural. To put asymptotic analysis to use, we generalize the game
to variable-size decks in a natural way: we let the number of properties p, the number of values v, and the
number of dealt cards vary.

Our deck will be D = {1, . . . , v}p. When p = 4 and v = 3, this is just the classic Set deck. For a card c ∈ D
and i ∈ {1, . . . , p} we denote by c[i] the value of the ith property (dimension) of c; that is, c = (c[1], . . . , c[p]).

Definition 1.1. Given v distinct cards c1, . . . , cv ∈ D, we say that S = {c1, . . . , cv} is valid if for all properties
i ∈ {1, . . . , p}, either c1[i] = · · · = cv[i] or the values c1[i], . . . , cv[i] are distinct.

Definition 1.2. The decision problem SET is as follows. Given a set of cards C ⊆ {1, . . . , v}p for any v > 0 and
p > 0, is there a valid set S ⊆ C? The problems k-VALUE SET and k-PROPERTY SET differ from SET only through
added restrictions on their input: in the former, we require that v = k; in the latter, we require that p = k.

Another common characterization of Set is to define a valid set as a line in Z4
3, which implies an alternate

generalization of finding lines in Zp
v . This is equivalent to our model when v = 3, but not in general. The

authors believe that the above model is the most natural way to generalize the original game; the reader
should be aware, however, that the alternate generalization can be solved in polynomial time.

1.3. Our results. In Section 2 we prove that SET is NP-complete, as is k-PROPERTY SET for k ≥ 3. The proof
uses a simple reduction from the problem 3-DIMENSIONAL MATCHING.

In section Section 3, we study the difficulty of 3-VALUE SET. In a restricted model in which algorithms
are only allowed to check pairs of cards to see if they are part of a valid set in the input, we give a worst-case
lower bound of

⌈
n2/4− n/2

⌉
checks and an algorithm which performs at most this many checks.

1.4. Related work. The authors are unaware of any previous work on the computational complexity of
Set. However, problems involving combinatorial properties of the game have been considered by many.
The most popular is to determine the smallest x for which any set of x cards must contain a valid set. The
answer turns out to be 21 [2].

2. SET IS NP-COMPLETE

We first give a reduction from k-DIMENSIONAL MATCHING to k-PROPERTY SET. Since 3-DIMENSIONAL
MATCHING is NP-complete [4, 5], the main result follows easily. Note that we use the terms dimension and
property interchangeably.

Definition 2.1. Let v > 0, k > 0, and M ⊆ {1, . . . , v}k. We say that M is a perfect matching if |M | = v so that
M = {m1, . . . ,mv} and for all dimensions i ∈ {1, . . . , k}, the values m1[k], . . . ,mv[k] are distinct.

Definition 2.2. The decision problem k-DIMENSIONAL MATCHING is as follows. Given a set C ⊆ {1, . . . , v}k for
some v > 0, is there a perfect matching M ⊆ C?

Lemma 2.3. There is a polynomial-time mapping reduction from k-DIMENSIONAL MATCHING to k-PROPERTY
SET.

2We leave some out details which do not concern our analysis, such as dealing more than 12 cards when no valid sets are present,
and scoring when players claim valid sets incorrectly.
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Proof. We are given C ⊆ {1, . . . , v}k and will produce C ′ ⊆ {1, . . . , v + 1}k such that C ′ contains a valid set
if and only if C contains a perfect matching. Let c ∈ {1, . . . , v + 1}k be the element (v + 1, . . . , v + 1), and
pick C ′ = C ∪ c. This reduction is illustrated in Figure 2.1. Clearly we can construct C ′ in polynomial time.
Why does it work?

Suppose there is a perfect matching M ⊆ C. Let M ′ = M ∪ c. Since for all i ∈ {1, . . . , k} and all m ∈ M ,
m[i] 6= v + 1 = c[i], and |M ′| = v + 1, M ′ is a perfect matching and is also valid, since by definition every
perfect matching is a valid set. Finally, M ′ ⊆ C ′, so C ′ contains a valid set.

Now suppose C ′ contains some valid set M ′ = {c1, . . . , cv+1}. There must be some property i ∈
{1, . . . , k} for which c1[i], . . . , cv+1[i] are distinct (because otherwise the cards c1, . . . , cv+1 would all be the
same card, and we need v distinct cards to form a valid set). By the pigeonhole principle, for some cj ∈ M ′

we have cj [i] = v+1. c is the only element of C ′ which takes on the value v+1 in any dimension, so c ∈ M ′.
Furthermore, since no other elements of M ′ agree with c in any dimension, the elements of M ′ must be
distinct in all dimensions, which means M ′ is a perfect matching. Thus M ′ − {c} is a perfect matching in
C. �

Corollary 2.4. k-PROPERTY SET for k ≥ 3 and SET are NP-complete.

Proof. SET and k-PROPERTY SET are clearly in NP: a non-deterministic algorithm can simply guess a subset
of the cards and check to see whether it is valid. By Lemma 2.3 and the fact that 3-DIMENSIONAL MATCH-
ING is NP-hard, 3-PROPERTY SET is NP-hard, which implies that k-PROPERTY SET for k ≥ 3 and SET are
also NP-hard, since they are generalizations of 3-PROPERTY SET. �

Note that 2-PROPERTY SET can be solved in polynomial time, as follows: View the deck as a v×v matrix.
A valid set is either a row or column of this matrix, or a perfect matching. We can clearly find sets of the
former type in polynomial time. For sets of the latter type, we can use a polynomial-time algorithm for
2-DIMENSIONAL MATCHING [1].

3. COMPLEXITY OF k-VALUE SET

Having shown that Set is hard when the number of values varies, we now fix the number of values at k
and allow the number of properties p to vary. This is the problem k-VALUE SET, defined in Section 1.2. In
the discussion here, we focus on the case k = 3, which is of particular interest since the classic Set deck uses
three values, and because three is the smallest k for which the problem is nontrivial.

There is an obvious brute force Θ(n2p)-time algorithm for 3-VALUE SET3:

3The generalization of this algorithm to arbitrary k runs in time Θ(nk−1p).

FIGURE 2.1. The reduction from k-DIMENSIONAL MATCHING to k-PROPERTY SET with
k = 2 and v = 5. In the figure on the left, each cell represents an element of the set
{1, . . . , 5}2, and the shaded cells are the elements of the input C. The reduction translates
this into the figure on the right, where the cells are elements of {1, . . . , 6}2, and the shaded
cells are the elements of C ′. In C, both the row and the diagonal are valid sets, but only
the diagonal is a perfect matching. In C ′, the row is no longer a valid set, but the diagonal
remains both a valid set and a perfect matching, because we have added the element c in
the upper right corner.
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Algorithm BruteForce: “On input C = {c1, . . . , cn}:
(1) For each pair of cards ch, ci ∈ C1:

(a) Compute the unique card cj such that {ch, ci, cj} is valid.
(b) If cj ∈ C, then return valid set.

(2) Return no valid set.”

There are
(

n
2

)
= Θ(n2) pairs to check in the loop in Step 1. The computation of cj takes time Θ(p) (i.e.

linear in the number of bits used to represent a card), and the check to see whether cj ∈ C can be done in
expected time Θ(p) through use of a hash table. Thus the algorithm runs in expected time Θ(n2p). Note
that the number of bits used to represent the input is m = Θ(pn), so the expected runtime can alternately
be written as Θ(m2/p).

Naturally one would like to do better than BruteForce. In particular, can we choose the pairs of cards to
check smartly, rather than just checking every pair? The following theorem states that we can make only a
constant factor fewer checks than BruteForce.

Definition 3.1. A pair-checking algorithm is one that solves 3-VALUE SET given only n and indirect access to
its input C = {c1, . . . , cn} through queries to an oracle which, when given two card identifiers h, i ∈ {1, . . . , n},
returns true if there is a card cj ∈ C such that {ch, ci, cj} is valid, and returns false otherwise.

Theorem 3.2. Any pair-checking algorithm must perform at least
⌈
n2/4− n/2

⌉
checks in the worst case.

Proof. Let A be any pair-checking algorithm. For a particular input C, let Gi be the graph which has a node
for each card in C and an edge (c1, c2) when after the ith check, A has not yet checked (c1, c2). Thus G0 is
the complete graph on n = |C| nodes, and a check corresponds to the removal of an edge.

The infinite family of inputs Xp = {1, 2}p contains no valid sets. (In the classic deck, this corresponds
to, for example, no reds, no ovals, no solids, and no ones.) On these inputs, A must check one pair of cards
from every triple of cards. To see this, suppose A didn’t check some triple. Then A must behave incorrectly
either on Xp or on inputs of the same size as Xp in which the unchecked triple was the one and only valid
set. Such an input is some ordering of the cards Yp = Xp ∪{(1, . . . , 1, 3)} \ {(2, . . . , 2)}, whose only valid set
is {(1, . . . , 1, 1), (1, . . . , 1, 2), (1, . . . , 1, 3)}.

This implies that if A terminates after t checks on input Xp, Gt must not contain a triangle. By Turán’s
Theorem [7, 8] this implies that Gt can have at most n2/4 edges. Since the initial complete graph G0 has
n2/2− n/2 edges, A must have made at least

⌈
n2/4− n/2

⌉
checks. �

A triangle-free graph which has the maximum number of edges, as given by Turán’s Theorem, is the
complete bipartite graph Kbn/2c,dn/2e. Taking the complement of this graph to find the edges that we should
check, we arrive at the following optimum pair-checking algorithm.

Algorithm OptimumPairCheck: “On input C = {c1, . . . , cn}:
(1) Partition C into two sets C1 =

{
c1, . . . , cbn/2c

}
and C2 =

{
cbn/2c+1, . . . , cn

}
.

(2) For each pair of cards ch, ci ∈ C1 and each pair of cards ch, ci ∈ C2:
(a) Compute the unique card cj such that {ch, ci, cj} is valid.
(b) If cj ∈ C, then return valid set.

(3) Return no valid set.”

In the classic Set game with 12 cards on the table, OptimumPairCheck uses 30 checks, as opposed to Brute-
Force’s 66 checks. Asymptotically, OptimumPairCheck uses half as many checks as BruteForce.

4. CONCLUSION

We generalized the game of Set to variable-sized inputs, letting the number of properties p and the
number of values v vary. We proved that when p ≥ 3, the game is NP-complete. When p ≤ 2 or v is fixed,
the problem is in P.

We then considered the case when v is fixed at 3, as in the classic game, and p varies. In a restricted
model in which algorithms are only allowed to check pairs of cards to see if they are part of a valid set in
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the input, we gave a worst-case lower bound of
⌈
n2/4− n/2

⌉
checks and an algorithm which performs at

most this many checks.
The main question we leave open is the following: is there a o(n2d)-time non-pair-checking algorithm

for 3-VALUE SET? Noting that in this case the problem is equivalent to finding three collinear points from a
subset of Zp

v , it may be interesting to explore possible connections with computational geometry problems
such as that of finding three collinear points from a set of n points in the plane. That problem is 3SUM-hard
[3]; it is an open problem to find a o(n2)-time4 algorithm for any 3SUM-hard problem.
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